منابع مشابه
On L-spaces and Non Left–orderable 3-manifold Groups
We show that a class of 3–manifolds with non left–orderable fundamental group are Heegaard Floer homology L–spaces
متن کامل1 0 Fe b 20 03 Non - left - orderable 3 - manifold groups
We show that several torsion free 3-manifold groups are not left-orderable. Our examples are groups of cyclic branched covers of S branched along links. The figure eight knot provides simple nontrivial examples. The groups arising in these examples are known as Fibonacci groups which we show not to be left-orderable. Many other examples of non-orderable groups are obtained by taking 3-fold bran...
متن کاملWhich 3-manifold Groups Are Kähler Groups?
The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G is both a (closed) 3-manifold group and a Kähler group, then G must be finite.
متن کاملIsospectrality and 3-manifold Groups
In this note, we explain how a well-known construction of isospectral manifolds leads to an obstruction to a group being the fundamental group of a closed 3-dimensional manifold. The problem of determining, for a given group G, whether there is a closed 3-manifold M with π1(M) ∼= G is readily seen to be undecidable; let us write G ∈ G 3 if there is such a 3-manifold. A standard conjecture (rela...
متن کاملDiagram Groups Are Totally Orderable
In this paper, we introduce the concept of the independence graph of a directed 2-complex. We show that the class of diagram groups is closed under graph products over independence graphs of rooted 2-trees. This allows us to show that a diagram group containing all countable diagram groups is a semi-direct product of a partially commutative group and R. Thompson's group F. As a result, we prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2005
ISSN: 0373-0956
DOI: 10.5802/aif.2098